Tecnología Médica

La radiación

0


Consideraciones generales:

La radiación no es misteriosa. Sus orígenes, sus leyes, sus efectos son perfectamente conocidos. Basta con consultar cualquier texto de física nuclear, de física moderna o de radioquímica para encontrar todos los detalles o las fórmulas que se requieran. El hecho de que sea invisible a nuestros ojos no debe molestarnos: también lo son las ondas de radio o televisión, los microorganismos y el oxígeno que respiramos.

La radiación no es esotérica ni mágica; es perfectamente mundana. Cualquiera que lo desee la puede usar, aunque naturalmente es importante tener la capacitación adecuada y el entendimiento de su naturaleza.

La radiación sí es de cuidado. Puede causar daños, al igual que cualquier otra aplicación de la tecnología. En este caso los daños pueden ser quemaduras u otros cambios químicos en los tejidos y cambios genéticos. Existe un código, elaborado en base a la experiencia acumulada, sobre el uso de las radiaciones, código que recomienda diferentes niveles de dosis de radiación que no deben rebasar los diversos sectores de la población. Las precauciones que exige el uso de la radiación no son distintas, en el fondo, de las que demandan otras tecnologías: evitar derrames, diseñar protecciones adecuadas, capacitar al personal, tener monitores apropiados, seguir ciertas reglas de conducta.

La radiación sí puede ser benéfica si se usa correctamente. Han salvado incontables vidas las radiografías v otros métodos de radiodiagnóstico. También la radioterapia ha salvado o prolongado gran número de vidas. Las múltiples aplicaciones no médicas de los radioisótopos, los aceleradores y los reactores han ayudado a avances tecnológicos de maneras insospechadas; y por otro lado, en la producción de energía eléctrica por reactores nucleares son las radiaciones producidas por la fisión nuclear las que calientan el fluido que mueve las turbinas. En algunos países la energía nuclear predomina sobre las otras fuentes, por lo que es indiscutible beneficio para esos países.

Historia:

El fenómeno de la radiactividad fue descubierto casualmente por Henri Becquerel en 1896. Estudiaba los fenómenos de fluorescencia y fosforescencia, para lo cual colocaba un cristal de Pechblenda, mineral que contiene uranio, encima de una placa fotográfica envuelta en papel negro y las exponía al sol. Cuando desenvolvía la placa la encontraba velada, hecho que atribuía a la fosforescencia del cristal. Los días siguientes no hubo sol y dejó en un cajón la placa envuelta con papel negro y con la sal de Uranio encima. Cuando sacó la placa fotográfica estaba velada, y no podía deberse a la fosforescencia ya que no había sido expuesta al sol. La única explicación era que la sal de uranio emitía una radiación muy penetrante. Sin saberlo Becquerel había descubierto lo que Marie Curie llamaría más tarde radiactividad. Mme. Curie siguió trabajando y fue la primera mujer que ocupó un puesto en la Universidad de la Sorbona en Paris. Siguió investigando junto a Ernest Rutherford, quien encontró que la radiación que emitían las sustancias radiactivas, tenía tres componentes que denominó: alfa, beta y gamma.

Radiación alfa

Es un tipo de radiación poco penetrante que puede ser detenida por una simple hoja de papel. Rutherford sugirió que los rayos alfa son iones de átomos de Helio (He2+) moviéndose rápidamente, y en 1909 lo demostró experimentalmente.

Radiación beta

Su poder de penetración es mayor que las alfa. Son frenadas por metros de aire, una lámina de aluminio o unos cm de agua. Existen varios tipos de radiación beta:

Radiación Beta menos
Radiación Beta más

Radiación gamma

En este tipo de radiación el núcleo no pierde su identidad. Mediante esta radiación el núcleo se desprende de la energía que le sobra para pasar a otro estado de energía más baja. Emite rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta.

Es una radiación muy penetrante, atraviesa el cuerpo humano y sólo se frena con planchas de plomo y muros gruesos de hormigón. Al ser tan penetrante y tan energética, de los tres tipos de radiación es la más peligrosa.

Usos y riesgos:

La radiación es un tipo de energía que forma parte de la naturaleza y controlada no representa ningún riesgo, pues de hecho las radiaciones conviven con nosotros en hospitales, industrias y hasta en ciertos gases que se encuentran en el suelo.

En el campo de la medicina, las radiaciones se utilizan para tratar el cáncer (radioterapia) y parta diagnosticar muchas enfermedades a través de rayos X. las radiaciones tienen muchos tipos de partículas, siendo las de tipo gamma, las más abundantes. Estas atraviesan sin dificultad los tejidos sin dificultad e impactan en el ADN de las células, produciendo mutaciones celulares y dando lugar a diversos tipos de cáncer, especialmente leucemia y cáncer de tiroides.

Efectos:

Los efectos que la exposición a la radiación tiene en el organismo humano son diversos. Las repercusiones dependen de la distancia a la que se encuentre cada persona, su sensibilidad, las dosis y los materiales radiactivos emitidos.
A mayores dosis de radiación, mayores repercusiones en la salud, pues estas destruyen el sistema nervioso central y los glóbulos blancos y rojos, comprometiendo el sistema inmunológico y dejando a la víctima vulnerable ante las infecciones.
La población más vulnerable son los niños, pues cuanto más jóvenes, mayor es la sensibilidad a las radiaciones, las cuales pueden provocar incluso algún tipo de retraso en el desarrollo cerebral de los bebé.
La exposición puntual a altas dosis de radiación (muy por encima de 100 mili sieverts), puede provocar el denominado Síndrome de Radiación Aguda, es decir, ciertos efectos agudos en poco tiempo que incluyen: malestar, quemaduras de la piel, problemas respiratorios, diarreas, náuseas o vómitos, fiebres, caidas del pelo, entre otros. Mientras tanto, los daños acumulados pueden causar problemas de salud más graves a largo plazo, fundamentalmente cáncer.
Cuando grandes cantidades de radiactividad entran en el cuerpo en muy poco tiempo, afecta a todos los órganos y cualquiera de ellos puede tener un fallo fulminante. Una única dosis de 5.000 mili sieverts, por ejemplo, mataría aproximadamente a la mitad de las personas expuestas en un mes.
Uno de los componentes más peligrosos que puede encontrarse en un reactor nuclear es el yodo radiactivo, el cual es absorbido por el organismo durante un accidente nuclear y tiende a acumularse en uno de los órganos más sensibles a la radiación: la glándula tiroides, ocasionado casos de cáncer y otros problemas de salud más adelante.
Tratamiento: en caso de haber estado expuesto a un alta radiación, se administran pastillas de yodo (yoduro de potasio), las cuales tiene como objetivo evitar los daños en la tiroides. A pesar de su elevada eficacia para proteger esta glándula, si se administran en las primeras horas de la exposición, las pastillas de yodo no protegen otras partes del organismo.
Cuando una persona ha estado expuesta a niveles excesivos de radiación, se habla de envenenamiento o radiación ionizante. Este tipo de radiación causa problemas graves que, después de la primera ronda de síntomas, puede provocar un período breve sin enfermedad aparente, sin embargo, en ese lapso hay lesiones potencialmente fatales en los órganos internos.

Dr. Avilio Méndez Flores

[ad code=2 align=center]

Los rayos láser

8

Definición:

El rayo láser es un sistema de amplificación de la luz que produce rayos coincidentes de enorme intensidad, los cuales presentan ondas de igual frecuencia que siempre están en fase.

Como este rayo producido es coincidente, puede ser utilizado para llevar cualquier tipo de señal, ya sea música (como en los discos compactos), voz humana, una imagen de televisión, etc.

Un poco de historia:

Todo se remonta a 1917, cuando Albert Einstein descubrió que si se estimulaban los átomos de una sustancia, estos podían emitir una luz con igual longitud de onda.

Este proceso se conoce también como emisión estimulada. Sin embargo para tener una plataforma capaz de producir un láser se requiere amplificar esa emisión estimulada.

La palabra LASER es la sigla (en ingles): Ligth Amplification by Stimulated Emission of Radiation, que traducido al español es: amplificación de la luz por emisión estimulada de radiación.

En el año 1958, los físicos A. Schawlow y C. Hard Townes describieron los principios del funcionamiento del láser y dos años más tarde, el estadounidense Theodore Maiman concretó el primer proceso láser con un cristal de rubí.

Producción del rayo láser:

Se requiere un barra de rubí (posee en su interior átomos de cromo dispersos como impurezas), en ambos extremos debe tener superficies espejadas de las cuales una refleja el 100% de los rayos y las otra aproximadamente 95% llamada superficie semirreflectante.

La barra de rubí es estimulada por fotones generados por el destello de una lámpara o tubo fluorescente con características determinadas.

El rubí libera fotones monocromáticos para descargar la energía acumulada, un foton estimula la formación de otro idéntico, produciéndose el fenómeno de clonación de los mismos.

Cuando estos fotones que se desplazan entre las dos superficies reflectantes superan una determinada cantidad de energía, son liberados a través de la superficie semirreflectante generando el rayo.

Se libera un rayo láser que tiene como característica el ser coherente y compuesto por luz monocromática (una sola longitud de onda).

Propiedades:

La radiación láser se caracteriza por una serie de propiedades, diferentes de cualquier otra fuente de radiación electromagnética, como son:

Monocromaticidad: emite una radiación electromagnética de una sola longitud de onda, en oposición a las fuentes convencionales como las lámparas incandescentes (bombillas comunes) que emiten en un rango más amplio, entre el visible y el infrarrojo, de ahí que desprendan calor. La longitud de onda, en el rango del espectro electromagnético de la luz visible, se identifica por los diferentes colores (rojo, naranja, amarillo, verde, azul, violeta), estando la luz blanca compuesta por todos ellos. Esto se observa fácilmente al hacer pasar un haz de luz blanca a través de un prisma.

Coherencia espacial o direccionabilidad: la radiación láser tiene una divergencia muy pequeña, es decir, puede ser proyectado a largas distancias sin que el haz se abra o disemine la misma cantidad de energía en un área mayor. Esta propiedad se utilizó para calcular la longitud entre la Tierra y la Luna, al enviar un haz láser hacia la Luna, donde rebotó sobre un pequeño espejo situado en su superficie, y éste fue medido en la Tierra por un telescopio.

Coherencia temporal: La luz láser se transmite de modo paralelo en una única dirección debido a su naturaleza de radiación estimulada, al estar constituido el haz láser con rayos de la misma fase, frecuencia y amplitud.

Tipos de Láser:

Existen numerosos tipos de láser que se pueden clasificar de muy diversas formas siendo la más común la que se refiere a su medio activo o conjunto de átomos o moléculas que pueden excitarse de manera que se crea una situación de inversión de población obteniéndose radiación electromagnética mediante emisión estimulada. Este medio puede encontrarse en cualquier estado de la materia: sólido, líquido, gas o plasma.

El primer láser fue desarrollado por Maiman en 1960 utilizando como medio activo un cristal cilíndrico de rubí. El láser de gas de CO2, que emite en el rango del infrarrojo, es capaz de proporcionar grandes potencias y presenta un gran rendimiento, por ello es el más usado.

Éste tipo de láser es utilizado en numerosas y diversas aplicaciones, como por ejemplo en la manufactura industrial, comunicaciones, soldadura y cortado de acero, entre otras.

Los láser de Ión Argon y Krypton son utilizados en las discotecas ya que emiten en el rango del espectro visible.

El láser Nd:YAG pertenece al grupo de los láser de estado sólido y emite también en el rango del infrarrojo, siendo ampliamente empleado como en el tratamiento oftalmológico de las cataratas, en medicina estética o en procesos industriales, como tratamientos de superficie y mecanizados.

Los láser de diodo están construidos con materiales semiconductores son cada vez más utilizados debido a sus ventajosas características, como un menor tamaño y elevadas potencias de trabajo. Sin embargo la calidad de salida del haz es menor que con láser.

Aplicaciones:

La medición de distancias con alta velocidad y precisión fue una aplicación militar inmediata después de que se inventara el láser, para el lanzamiento de artillería o para el cálculo de la distancia entre la Luna y la tierra (384.403 km.), con una exactitud de tan sólo 1 milímetro. También es utilizado en el seguimiento de un blanco en movimiento al viajar el haz a la velocidad de la luz.

Aplicaciones más cotidianas de los sistemas láser son, por ejemplo, el lector del código de barras, el almacenamiento óptico y la lectura de información digital en discos compactos (CD) o en discos versátiles digitales (DVD), que se diferencia en que éstos últimos utilizan una longitud de onda más corta (emplean láser azul en vez de rojo). Otra de las aplicaciones son las fotocopiadoras e impresoras láser, o las comunicaciones mediante fibra óptica.

Las aplicaciones para un fututo próximo son los ordenadores cuánticos u ópticos que serán capaces de procesar la información a la velocidad de la luz al ir los impulsos eléctricos por pulsos de luz proporcionados por sistemas láser. La fusión por confinamiento inercial es la aplicación más deseada ya que permitiría el desarrollo de la fusión nuclear del hidrógeno de una forma controlada, permitiendo la obtención de una elevadísima cantidad de energía. Dicho proceso se produce en el Sol y se obtuvo, aunque no de una forma controlada, en 1952, con la bomba atómica de hidrógeno.

En la holografía, las ondas se solapan en el espacio o se combinan para anularse (interferencia destructiva) o para sumarse (interferencia constructiva) según la relación entre sus fases. Debido a la relación especial entre los fotones del haz del láser, estos rayos son considerados el mejor ejemplo conocido de efectos de interferencia representados en los interferómetros y hologramas. La holografía es utilizada para proporcionar imágenes en tres dimensiones. También es utilizada como sistema de seguridad en las tarjetas de crédito.
Dentro del procesado de materiales, el láser es utilizado en todas las ramas (corte, soldadura, marcado microscópico, etc.) al poder ser empleados en casi todos los materiales y tener una muy buena respuesta en el resultado.

Las ventajas de los rayos láser en Medicina:

Una operación con rayos láser toma en realidad sólo fracciones de segundos.

El paciente únicamente experimenta alguna sensación extraña que nunca llega a describir como dolorosa; por ello es que no necesita de ninguna anestesia en estos casos.

Otra ventaja es que no se produce sangramiento alguno, ya que el láser provoca la coagulación instantánea del área sobre la cual se está actuando, lo cual evita totalmente el riesgo de que se presenten hemorragias, por pequeñas que estas puedan ser.

Como no se emplean instrumentos quirúrgicos en este tipo de operación, las personas que son especialmente impresionables con los instrumentos médicos, no se asustan; los cordones de fibra óptica penden de la máquina la cual es manipulada por un operador. Estos cordones vienen ya dirigidos a la lesión que debe ser tratada. El individuo aprensivo, por lo tanto, apenas percibe los elementos que puedan intimidarlo.

Puesto que todo el proceso se realiza sin la necesidad de recurrir a la anestesia, ni se presentan los dolores postoperatorios, característicos de las intervenciones quirúrgicas tradicionales, tampoco hay necesidad de medicación. Por eso casi nunca se requiere la hospitalización, que en todo caso sería muy breve; en la gran generalidad de los casos, el paciente puede reanudar de inmediato sus actividades habituales.

Es muy importante saber que hoy ya se puede contar con estos nuevos procedimientos tecnológicos en el campo de la Cirugía, sobre todo en aquellas áreas tan delicadas y peligrosas de manipulación, como son el cerebro y la médula espinal. También es alentado saber que por medio del rayo láser se pueden corregir defectos visuales con los cuales antes estábamos condenados a vivir. Finalmente, las personas preocupadas por proyectar siempre una buena apariencia física, tienen que sentirse muy complacidas al saber que con el rayo láser sed pueden eliminar muchos defectos de la piel y que esas operaciones no dejan, a su vez, ni huellas ni cicatrices. Y todo eso, sin dolor y sin las molestias postoperatorias de unos días en el hospital.

De acuerdo con la intensidad de su luz, existen cuatro tipos diferentes de rayos láser:

El medio, que se emplea para producir efectos antiinflamatorios y analgésicos.

El quirúrgico (o rayo láser caliente), que se utiliza en cirugía microscópica, coagulando y vaporizando los tejidos enfermos que se desean eliminar, también puede servir como bisturí o como una especie de soldador para unir los tejidos lesionados.

El diagnosticador, que se emplea para reconocimientos médicos y estudios celulares de orden cualitativo y cuantitativo. Este tipo de rayo láser es muy útil para detectar tumores mientras que los mismo se hallan en las fases iniciales de su desarrollo.

El comunicador, que está en proceso de perfeccionamiento en estos momentos, y que servirá en el futuro para alcanzar a pacientes que se hallan a muchísimos kilómetros de distancia de las bases médicas donde se encuentra instalado el rayo láser.

Los tratamientos con rayos láser de baja intensidad se emplean para estimular los tejidos y disminuir el dolor y la inflamación de las zonas afectadas.

También son efectivos al mejorar el flujo de la sangre y de los líquidos linfáticos.

Reducen la producción de prostaglandinas (sustancias similares a las hormonas), las cuales promueven la inflamación y causan dolor.

Los rayos láser de baja intensidad son empleados en el tratamiento de los desgarramientos de músculos, afecciones de los ligamentos e inflamaciones de los tendones y las articulaciones.

Los rayos láser de alta intensidad destruyen las células directamente en el punto donde incide el rayo, dejando intactas las células alrededor de esta área. Este es uno de los motivos por los que son tan empleados en el tratamiento de algunos tipos de tumoraciones.

Asimismo, el rayo corta a través del tejido y, simultáneamente, produce la coagulación de la sangre, lo cual lo convierte también en un instrumento de cirugía sumamente efectivo.

En oftalmología:

El empleo de los rayos láser también es muy útil en el tratamiento de la retinopatía causada por la diabetes (para evitar el sangramiento de vasos sanguíneos anormales), para prevenir y tratar el desprendimiento de la retina (al sellar pequeñas áreas de desgarramiento), y para destruir los tumores pequeños que puedan desarrollarse en la retina.
Igualmente, el rayo láser se emplea para restaurar la visión, cuando la misma se vuelve opaca después de la cirugía de cataratas.

En ginecología:

Muchas veces los rayos láser son empleados para quitar la obstrucción de las trompas de Falopio, eliminando el tejido de cicatriz que se forma después de una situación de infección o de esterilización.

También son empleados para destruir las células anormales del cuello uterino.

Otros usos de los rayos láser:

Los rayos láser son empleados comúnmente para eliminar pequeñas marcas de nacimiento e inclusive tatuajes; los resultados en este sentido pueden variar, pero son efectivos en la gran mayoría de los casos.

Los tumores de la laringe, en su fases preliminares ,, pueden ser eliminados con éxito mediante los rayos láser, sin que se dañen las cuerdas vocales.

Desde luego, en la actualidad se consideran muchas otras aplicaciones para los rayos láser, y entre sus usos está la eliminación de la placa que causa la ateroesclerosis en las arterias. La desintegración de cálculos de las vías urinarias. Y en un futuro, para eliminar tumoraciones que sean inaccesibles en el interior del cerebro y de la médula espinal.

Dr. Avilio Méndez Flores

Go to Top